Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(18): 10366-10375, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651967

RESUMEN

Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/ß-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated ß-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.


Asunto(s)
Enterotoxinas , Flavonoides , Receptores Frizzled , Morus , Hojas de la Planta , Células Madre , beta Catenina , Animales , Morus/química , Flavonoides/farmacología , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Humanos , Enterotoxinas/metabolismo , Proliferación Celular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/citología , Flavonas
2.
Phytomedicine ; 128: 155363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493715

RESUMEN

BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.


Asunto(s)
Alcaloides , Pollos , Coccidiosis , Eimeria , Matrinas , Enfermedades de las Aves de Corral , Quinolizinas , Vía de Señalización Wnt , Animales , Quinolizinas/farmacología , Alcaloides/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Eimeria/efectos de los fármacos , Coccidiosis/tratamiento farmacológico , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/parasitología , Células Madre/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/parasitología
3.
World J Clin Cases ; 12(1): 163-168, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38292635

RESUMEN

BACKGROUND: Endophthalmitis occurring in silicone oil-filled eyes is a very rare occurrence, with reported incidence rates ranging between 0.07% and 0.039%. Traditional methods of management of infectious endophthalmitis include the removal of silicone oil, washout of the vitreous cavity, administration of intravitreal antibiotics, and re-injection of silicone oil. CASE SUMMARY: Herein, we report the case of a 39-year-old man with unilateral endophthalmitis after pars plana vitrectomy and silicone oil tamponade. Intravitreal injections of full-dose antibiotics and anterior chamber washout were used to treat the patient. No signs of retinal toxicity were observed during the follow-up period. CONCLUSION: Intravitreal full-dose antibiotic injections and anterior chamber washout are promising alternatives to traditional therapies for endophthalmitis in silicone oil-filled eyes.

4.
J Agric Food Chem ; 71(35): 13079-13091, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37632443

RESUMEN

l-Malic acid (l-MA) contributes to energy metabolism and nutrient digestion, which is an alternative to antibiotics for livestock; however, it is not clear whether l-MA can replace antibiotics to promote intestinal development in chicks. To investigate the effects of l-MA on intestinal stem cells (ISCs) driving epithelial renewal, we employed in vivo chick feeding experiments, chick intestinal organoid (IO) models, and in vitro chick intestinal epithelial cell models. The results showed that the feed conversion rate and diarrhea scores were decreased with improved jejunal morphology and barrier function in the 0.5% l-MA group. l-MA promoted the proliferation and differentiation of ISCs, inhibited the cell apoptosis, increased the IO formation efficiency, surface area, budding efficiency, and number of buds, suggesting that l-MA promoted the expansion of ISCs. Furthermore, l-MA treatment dramatically upregulated the Wnt/ß-catenin signaling pathway in the jejunum. Importantly, Wnt transmembrane receptor Frizzled7 (FZD7) mRNA abundance was increased in response to dietary 0.5% l-MA. In addition, molecular docking analysis using Autodock software and isothermal titration calorimetry revealed that l-MA binds to Lys91 of FZD7 with high affinity, indicating a spontaneous interaction. The chick intestinal epithelial cells treated with 10 µM l-MA significantly increased cell viability, and the Wnt/ß-catenin signaling pathway was activated, but l-MA failed to upregulate the Wnt/ß-catenin signaling when treated with the FZD7-specific inhibitor Fz7-21 in chick intestinal epithelial cells, indicating that FZD7 is indispensable for l-MA activation of the Wnt/ß-catenin signaling. Collectively, l-MA stimulated ß-catenin signaling by targeting transmembrane receptor FZD7, which promoted ISC expansion and inhibited cell apoptosis to accelerate intestinal epithelial renewal in chicks.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Simulación del Acoplamiento Molecular , Antibacterianos , Pollos
5.
Poult Sci ; 102(6): 102681, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37098298

RESUMEN

Pigeons are important commercial poultry in addition to being ornamental birds. In 2021, more than 111 million pairs of breeding pigeons were kept in stock and 1.6 billion squabs were slaughtered for meat in China. However, in many countries, pigeons are not domestic birds; thus, it is necessary to elucidate the factors involved in their growth and feeding strategy due to their economic importance. Pigeons are altricial birds, so feedstuffs cannot be digested by squabs, which instead are fed a mediator named pigeon crop milk. During lactation, breeding pigeons (both female and male) ingest diets and generate crop milk to feed squabs. Thus, research on squab growth is more complex than that on chicken and other poultry. To date, research on the measurement of crop milk composition and estimation of the factors affecting its production has not ceased, and these results are worth reviewing to guide production. Moreover, some studies have focused on the formation mechanism of crop milk, reporting that the synthesis of crop milk is controlled by prolactin and insulin-activated pathways. Furthermore, the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway, target of rapamycin (TOR) pathway and AMP-activated protein kinase (AMPK) pathway were also reported to be involved in crop milk synthesis. Therefore, this review focuses on the chemical composition of pigeon crop milk and factors affecting its production during lactation. This work explores novel mechanisms and provides a theoretical reference for improving production in the pigeon industry, including for racing, ornamental purposes, and production of meat products.


Asunto(s)
Columbidae , Leche , Femenino , Masculino , Animales , Columbidae/fisiología , Pollos , Lactancia , Transducción de Señal
6.
J Sci Food Agric ; 103(9): 4649-4659, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36930725

RESUMEN

BACKGROUND: Probiotics comprise effective feed additives that can replace antibiotics in animal livestock production. However, mono-strain probiotics appear less effective because of their instability. Therefore, the present study aimed to investigate dietary supplementation with compound probiotics (CPP) on growth performance, diarrhea rate and intestinal mucosal barrier, as well as the possible molecular mechanism, in chicks. In total, 360 1-day-old chicks of the Hy-Line Brown Chicks were randomly divided into the control group (CON, basal diet), chlortetracycline group (500 mg kg-1 CTC) and compound probiotics group (1000 mg kg-1 CPP, consisting of Bacillus subtilis, Bacillus licheniformis, Enterococcus faecium and yeast). The experiment period was 56 days. RESULTS: The results showed that, in comparison with the CON group, CPP significantly increased the average daily feed intake and average daily gain of chicks and reduced diarrhea (P < 0.05). The probiotic group exhibited increased immune organ (i.e. spleen and thymus) mass and increased levels of serum immunoglobulin (Ig)A, IgM and IgG (P < 0.05) compared to the CTC group. In addition, the jejunal mass and morphology were improved in the probiotic group (P < 0.05). Moreover, CPP reinforced jejunal barrier function, as indicated by increased transepithelial electrical resistance, protein expression of occludin and claudin-1, and diamine oxidase levels in the jejunum (P < 0.05). Likewise, enhanced fluorescence signals of proliferating cell nuclear antigen-labeled mitotic cells and villin-labeled absorptive cells in the jejunum (P < 0.05) suggested that CPP promoted intestinal stem cells activity. Mechanistically, the Wnt/ß-catenin signaling pathway, including ß-catenin, TCF4, c-Myc, cyclin D1 and Lgr5, was amplified in the jejunum by CPP addition (P < 0.05). CONCLUSION: The present study demonstrated that dietary supplementation with CPP reinforced the jejunal epithelial integrity by activating Wnt/ß-catenin signaling and enhanced immune function in chicks. © 2023 Society of Chemical Industry.


Asunto(s)
Probióticos , beta Catenina , Animales , beta Catenina/genética , Vía de Señalización Wnt , Dieta/veterinaria , Diarrea/prevención & control , Diarrea/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Pollos
7.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119431, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36632926

RESUMEN

During heat stress (HS), the intestinal epithelium suffers damage due to imbalance of tissue homeostasis. However, the specific mechanism by which intestinal stem cells (ISCs) migrate and differentiate along the crypt-villus axis to heal lesions upon insult is unclear. In our study, C57BL/6 mice and IPEC-J2 cells were subjected to normal ambient conditions (25 °C for 7 days in vivo and 37 °C for 18 h in vitro) or 41 °C. The results showed that HS impaired intestinal morphology and barrier function. The numbers of ISCs (SOX9+ cells), mitotic cells (PCNA+ cells), and differentiated cells (Paneth cells marked by lysozyme, absorptive cells marked by Villin, goblet cells marked by Mucin2, enteroendocrine cells marked by Chromogranin A, and tuft cells marked by DCAMKL1) were reduced under high temperature. Importantly, BrdU incorporation confirmed the decreased migration ability of jejunal epithelial cells exposed to 41 °C. Furthermore, intestinal organoids (IOs) expanded from jejunal crypt cells in the HS group exhibited greater growth disadvantages. Mechanistically, the occurrence of these phenotypes was accompanied by FAK/paxillin/F-actin signaling disruption in the jejunum. The fact that the FAK agonist ZINC40099027 reversed the HS-triggered inhibition of IPEC-J2 cell differentiation and migration further confirmed the dominant role of FAK in response to high-temperature conditions. Overall, the present investigation is the first to reveal a major role of FAK/paxillin/F-actin signaling in HS-induced ISC migration and differentiation along the crypt-villus axis, which indicates a new therapeutic target for intestinal epithelial regeneration after heat injuries.


Asunto(s)
Actinas , Mucosa Intestinal , Animales , Ratones , Actinas/metabolismo , Diferenciación Celular , Movimiento Celular , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Paxillin/metabolismo , Células Madre/metabolismo
8.
Cell Mol Life Sci ; 79(10): 523, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36121491

RESUMEN

Intestinal stem cells (ISCs) decode and coordinate various types of nutritional information from the diet to support the crypt-villus axis architecture, but how specific dietary molecules affect intestinal epithelial homeostasis remains unclear. In the current study, L-glutamate (Glu) supplementation in either a nitrogen-free diet (NFD) or a corn-soybean meal diet (CSMD) stimulated gut growth and ISC expansion in weaned piglets. Quantitative proteomics screening identified the canonical Wnt signalling pathway as a central regulator of intestinal epithelial development and ISC activity in vivo. Importantly, the Wnt transmembrane receptor Frizzled7 (FZD7) was upregulated in response to dietary Glu patterns, and its perturbations in intestinal organoids (IOs) treated with a specific inhibitor and in FZD7-KO IPEC-J2 cells disrupted the link between Glu inputs and ß-catenin signalling and a subsequent reduction in cell viability. Furthermore, co-localization, coimmunoprecipitation (Co-IP), isothermal titration calorimetry (ITC), and microscale thermophoresis (MST) revealed that Glu served as a signalling molecule directly bound to FZD7. We propose that FZD7-mediated integration of the extracellular Glu signal controls ISC proliferation and differentiation, which provides new insights into the crosstalk of nutrients and ISCs.


Asunto(s)
Ácido Glutámico , beta Catenina , Animales , Proliferación Celular , Ácido Glutámico/metabolismo , Células Madre , Porcinos , Vía de Señalización Wnt , beta Catenina/metabolismo
9.
J Agric Food Chem ; 70(34): 10644-10653, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35997221

RESUMEN

R-spondin 1 (RSPO1) is a ligand for the intestinal stem cell (ISC) marker Lgr5 in the crypt, which functions to amplify canonical Wnt signaling to stimulate the division of ISCs. Despite the crucial role of recombinant human RSPO1 (rhRSPO1) in homeostasis and regeneration, little is known about RSPO1 among different species. Here, we cloned the porcine RSPO1 (pRSPO1) gene and obtained rpRSPO1 protein through the expression system of the recombinant Escherichia coli Rosetta (DE3) chemical competent cells. Using the in vitro IPEC-J2 model that combines cell proliferation evaluation approaches, we identified the rpRSPO1 activity in stimulating jejunal epithelial cells. And upon deoxynivalenol challenge in mice, we found that rpRSPO1 ameliorated their growth retardation and jejunal epithelial integrity. Importantly, the ISCs in the jejunum had greater proliferation and differentiation potential that was accompanied by Wnt/ß-catenin pathway activation after rpRSPO1 modulation. Subsequently, the jejunal organoids expanded from these ISCs ex vivo presented robust growth advantages. And the rpRSPO1 was able to guide Wnt/ß-catenin activity to increase ISC activity. Our work systematically demonstrates that rpRSPO1 facilitates ISC expansion by potentiating Wnt/ß-catenin signaling during homeostasis and responding to deoxynivalenol perturbations.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Proliferación Celular , Homeostasis , Humanos , Mucosa Intestinal/metabolismo , Ratones , Células Madre/metabolismo , Porcinos , Tricotecenos , beta Catenina/metabolismo
10.
J Agric Food Chem ; 70(12): 3745-3756, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35312309

RESUMEN

This work provided an interesting finding of lysine (Lys) control on skeletal muscle growth besides protein synthesis. According to the isobaric tag for relative and absolute quantitation and molecular docking analyses, we found both in in vivo skeletal muscle and in vitro muscle satellite cells (MuSCs) that the frizzled7 (FZD7) expression level was positively correlated with Lys levels and this was consistent with the activation of the Wnt/ß-catenin pathway. On the other hand, FZD7 inhibition suppressed the Lys-rescued Wnt/ß-catenin pathway, FZD7 knockdown caused cell proliferation, and Wnt/ß-catenin pathway restrictions could not be compensated for by Lys or Wnt3a. Furthermore, the combination between Lys and recombinant pig frizzled7 (rpFZD7) protein was confirmed by isothermal titration calorimetry. This finding displayed concrete evidence that Lys is not only a molecular block of protein synthesis but is also a ligand for FZD7 to activate ß-catenin to stimulate MuSCs in promoting skeletal muscle growth.


Asunto(s)
Lisina , beta Catenina , Animales , Lisina/metabolismo , Simulación del Acoplamiento Molecular , Músculo Esquelético/metabolismo , Porcinos , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
11.
Poult Sci ; 101(3): 101644, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34986451

RESUMEN

This experiment was undertaken to investigate the effects of parental dietary DL-methionine (DL-Met) and DL-methionyl-DL-methionine (DL-Met-Met) supplementation on the intestinal development of young squabs. A total of 108 pairs of breeding pigeons and 432 one-day-old squabs were randomly divided into 3 groups: the control group (CON) was fed a basal diet (CP = 15%) and the experimental groups were fed a basal diet supplemented with 0.3% DL-Met or DL-Met-Met. Each pair of breeding pigeons nourished 4 young squabs, and 8 squabs from each treatment were randomly sampled at the end of the experiment. The results indicated that DL-Met and DL-Met-Met supplementation improved the intestinal morphology and structure in the squabs, as reflected by the increased relative intestinal weight of each small intestinal segment, villus height, and villus to crypt ratio. In addition, DL-Met and DL-Met-Met supplementation significantly increased the protein expression of cell proliferation markers (Ki67 and PCNA) and tight junction proteins (ZO-1 and Claudin-1) in the jejunum and strengthened the fluorescence signal intensity of Ki67, PCNA and Villin. Moreover, the expression of Wnt/ß-catenin signaling pathway-related proteins (Frizzled 7 [FZD7], p-GSK-3ß, Active ß-catenin, ß-catenin, TCF4, c-Myc, and Cyclin D1), and intestinal peptide transporter 1 (PepT1) in the jejunum was considerably higher in the treatment group than in the CON group (P < 0.05), with the DL-Met-Met group having the highest expression. Consistently, the molecular docking results predicted the possibility that DL-Met or DL-Met-Met binds to the membrane receptor FZD7, which mediates Wnt/ß-catenin signaling. Collectively, the improvement of the intestinal development in squabs after parental dietary 0.3% DL-Met and DL-Met-Met supplementation could be through activation of Wnt/ß-catenin signaling pathway, and DL-Met-Met is superior to DL-Met. Our findings may provide basic data for further optimizing the feeding formula of breeding pigeons and improving the growth and development of squabs.


Asunto(s)
Columbidae , Metionina , Alimentación Animal/análisis , Animales , Glucógeno Sintasa Quinasa 3 beta , Metionina/farmacología , Simulación del Acoplamiento Molecular , Vía de Señalización Wnt , beta Catenina
12.
Anim Nutr ; 7(4): 1031-1038, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34738033

RESUMEN

The intestinal health of chick embryos is vital for their life-long growth, and exogenous nutrition intervention may provide sufficient nutrition for embryonic development. In the present study, we investigated the effect of in ovo injection of L-methionine (L-Met) on the intestinal structure and barrier function of chick embryos. There were 4 groups of treatments: the control (CON) group injected with phosphate-buffered saline (PBS) and the other 3 groups injected with 5, 10, and 20 mg L-Met/egg, respectively. The injection was performed on embryonic day 9 (E9), and intestinal samples were collected on the day of hatching for analysis. The results showed that, compared with the CON group, the groups administered an in ovo injection of L-Met increased relative weights of the duodenum, jejunum, and ileum (P < 0.05). Hematoxylin and eosin (H&E) staining showed that the groups injected with 5, 10, and 20 mg L-Met significantly increased villus height and crypt depth (P < 0.05). Moreover, in ovo injection of 10 mg L-Met also increased the transepithelial electrical resistance (TEER) of the jejunum (P < 0.05). Injection with 10 and 20 mg L-Met increased the expression of the tight junction proteins (ZO-1 and claudin-1) and the fluorescence signal intensity of Ki67 and villin proteins (P < 0.05). Further, the protein expression of phospho-Janus kinase 2 (p-JAK2) and phospho-signal transducer and activator of transcription 3 (p-STAT3) was significantly increased by 10 or 20 mg L-Met injection (P < 0.05). In conclusion, the injection of L-Met, especially at a dose of 10 mg, showed beneficial effects on the intestinal integrity of chick embryos due to the activation of the JAK2/STAT3 signaling pathway. Our results may provide new insights for regulating the intestinal development of embryonic chicks and the rapid growth of chicks after hatching.

13.
Chem Biol Interact ; 348: 109640, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506767

RESUMEN

Intestinal stem cell (ISC)-driven intestinal homeostasis is subjected to dual regulation by dietary nutrients and toxins. Our study investigated the use of lauric acid (LA) to alleviate deoxynivalenol (DON)-induced intestinal epithelial damage. C57BL/6 mice in the control, LA, DON, and LA + DON groups were orally administered PBS, 10 mg/kg BW LA, 2 mg/kg BW DON, and 10 mg/kg BW LA + 2 mg/kg BW DON for 10 days. The results showed that LA increased the average daily gain and average daily feed intake of the mice exposed to DON. Moreover, the DON-triggered impairment of jejunal morphology and barrier function was significantly improved after LA supplementation. Moreover, LA rescued ISC proliferation, inhibited intestinal cell apoptosis, and promoted ISC differentiation into absorptive cells, goblet cells, and Paneth cells. The jejunum crypt cells from the mice in the LA group expanded into enteroids, resulting in a significantly greater enteroid area than that in the DON group. Furthermore, LA reversed the DON-mediated inhibition of the Akt/mTORC1/S6K1 signaling axis in the jejunum. Our results indicated that LA accelerates ISC regeneration to repair intestinal epithelial damage after DON insult by reactivating the Akt/mTORC1/S6K1 signaling pathway, which provides new implications for the function of LA in ISCs.


Asunto(s)
Intestinos/citología , Ácidos Láuricos/farmacología , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Tricotecenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo
14.
Antioxidants (Basel) ; 10(9)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34573125

RESUMEN

Deoxynivalenol (DON) is a threatening mycotoxin primarily present in the agricultural environment, especially in food commodities and animal forages, and exerts significant global health hazards. Lycopene (LYC) is a potent antioxidant carotenoid mainly present in tomatoes and other fruits with enormous health benefits. The present study was designed to ascertain whether LYC could protect DON-induced intestinal epithelium oxidative injury by regulating Keap1/Nrf2 signaling in the intestine of mice. A total of forty-eight mice were randomly distributed into four groups (n = 12), Control (CON), 10 mg/kg BW LYC, 3 mg/kg BW DON, and 3 mg/kg DON + 10 mg/kg LYC BW (DON + LYC). The experimental groups were treated by intragastric administration for 11 days. Our results showed that LYC significantly increased average daily feed intake (ADFI), average daily gain (ADG), and repaired intestinal injury and barrier dysfunction, as evident by increased trans-epithelial electrical resistance (TEER) and decreased diamine oxidase (DAO) activity, as well as up-regulated tight junction proteins (occludin, claudin-1) under DON exposure. Furthermore, LYC treatment stabilized the functions of intestinal epithelial cells (Lgr5, PCNA, MUC2, LYZ, and Villin) under DON exposure. Additionally, LYC alleviated DON-induced oxidative stress by reducing ROS and MDA accumulation and enhancing the activity of antioxidant enzymes (CAT, T-SOD, T-AOC, and GSH-Px), which was linked with the activation of Nrf2 signaling and degradation of Keap1 expression. Conclusively, our findings demonstrated that LYC protects intestinal epithelium from oxidative injury by modulating the Keap1/Nrf2 signaling pathway under DON exposure. These novel findings could lead to future research into the therapeutic use of LYC to protect the DON-induced harmful effects in humans and/or animals.

15.
Mol Nutr Food Res ; 65(17): e2100406, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216418

RESUMEN

SCOPE: The intestinal epithelium is nourished by various nutrients and subjected to persistent and widespread feed-derived mycotoxin stress. l-Carnosine (LC) possesses robust antioxidant activity; however, its role in protecting intestinal mucosa against deoxynivalenol (DON) is still unclear. METHODS AND RESULTS: In this study, 300 mg kg-1 BW LC and 3 mg kg-1 BW DON are orally administered to mice either alone or in combination for 10 days to investigate the role of LC in protecting the intestine against DON. This study found that LC alleviates the growth retardation of mice and repairs the damaged jejunal structure and barrier functions under DON exposure. LC rescues the intestinal stem cells (ISCs), increases the growth advantage in enteroids derived from jejunal crypts of mice in each group ex vivo, improves the proliferation and apoptosis of intestinal cells, and promotes ISC differentiation into absorptive cells, goblet cells, and Paneth cells. Furthermore, LC activates Nrf2 signaling by binding to Keap1 to reverse the striking DON-induced increase in ROS levels. CONCLUSION: The study findings unveil that LC potentiates the antioxidant capacity of ISCs by regulating the Keap1/Nrf2 signaling pathway, which contributes to the intestinal epithelial regeneration response to DON insult.


Asunto(s)
Carnosina/farmacología , Intestinos/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/citología , Intestinos/metabolismo , Intestinos/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo
16.
Biomed Pharmacother ; 138: 111511, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33744757

RESUMEN

Flavonoids are natural plant-derived dietary bioactive compounds having a substantial impact on human health. Morin hydrate is a bioflavonoid mainly obtained from fruits, stem, and leaves of Moraceae family members' plants. Plenty of evidences supported that morin hydrate exerts its beneficial effects against various chronic and life-threatening degenerative diseases. Our current article discloses the recent advances that have been studied to explore the biological/pharmacological properties and molecular mechanisms to better understand the beneficial and multiple health benefits of morin hydrate. Indeed, Morin hydrate exerts free radical scavenging, antioxidant, anti-inflammatory, anti-cancerous, anti-microbial, antidiabetic, anti-arthritis, cardioprotective, neuroprotective, nephroprotective, and hepatoprotective effects. Moreover, morin hydrate exhibits its pharmacological activities by modulating various cellular signaling pathways such as Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-қB), Mitogen-activated protein kinase (MAPK), Janus kinases/ Signal transducer and activator of transcription proteins (JAKs/STATs), Kelch-like ECH-associated protein1/Nuclear erythroid-2-related factor (Keap1/Nrf2), Endoplasmic reticulum (ER), Mitochondrial-mediated apoptosis, Wnt/ß-catenin, and Mechanistic target of rapamycin (mTOR). Most importantly, morin hydrate has the potential to modulate a variety of biological networks. Therefore, it can be predicted that this therapeutically potent compound could serve as a dietary agent for the expansion of human health and might be helpful for the development of the novel drug in the future. However, due to the lack of clinical trials, special human clinical trials are needed to address the effects of morin hydrate on various life-threatening disparities to recommend morin and/or morin-rich foods with other foods or bioactive dietary components, as well as dose-response interaction and safety profile.


Asunto(s)
Antioxidantes/administración & dosificación , Flavonoides/administración & dosificación , Fitoquímicos/administración & dosificación , Animales , Antioxidantes/aislamiento & purificación , Diabetes Mellitus/dietoterapia , Diabetes Mellitus/metabolismo , Flavonoides/aislamiento & purificación , Cardiopatías/dietoterapia , Cardiopatías/metabolismo , Humanos , Enfermedades Neurodegenerativas/dietoterapia , Enfermedades Neurodegenerativas/metabolismo , Fitoquímicos/aislamiento & purificación
17.
Stem Cells ; 39(4): 482-496, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33373490

RESUMEN

Enterotoxigenic Escherichia coli causes severe infectious diarrhea with high morbidity and mortality in newborn and weanling pigs mainly through the production of heat-stable enterotoxins (STs). However, the precise regulatory mechanisms involved in ST-induced intestinal epithelium injury remain unclear. Consequently, we conducted the experiments in vivo (mice), ex vivo (mouse and porcine enteroids), and in vitro (MODE-K and IPEC-J2 cells) to explore the effect of STp (one type of STa) on the integrity of the intestinal epithelium. The results showed that acute STp exposure led to small intestinal edema, disrupted intestinal integrity, induced crypt cell expansion into spheroids, and downregulated Wnt/ß-catenin activity in the mice. Following a similar trend, the enteroid-budding efficiency and the expression of Active ß-catenin, ß-catenin, Lgr5, PCNA, and KRT20 were significantly decreased after STp treatment, as determined ex vivo. In addition, STp inhibited cell proliferation, induced cell apoptosis, destroyed cell barriers, and reduced Wnt/ß-catenin activity by downregulating its membrane receptor Frizzled7 (FZD7). In contrast, Wnt/ß-catenin reactivation protected the IPEC-J2 cells from STp-induced injury. Taking these findings together, we conclude that STp inhibits intestinal stem cell expansion to disrupt the integrity of the intestinal mucosa through the downregulation of the Wnt/ß-catenin signaling pathway.


Asunto(s)
Toxinas Bacterianas/toxicidad , Edema/genética , Enterotoxinas/toxicidad , Proteínas de Escherichia coli/toxicidad , Receptores Frizzled/genética , Mucosa Intestinal/efectos de los fármacos , Organoides/efectos de los fármacos , Células Madre/efectos de los fármacos , beta Catenina/genética , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Edema/inducido químicamente , Edema/metabolismo , Edema/patología , Escherichia coli Enterotoxigénica/química , Escherichia coli Enterotoxigénica/patogenicidad , Receptores Frizzled/metabolismo , Regulación de la Expresión Génica , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Queratina-20/genética , Queratina-20/metabolismo , Ratones , Organoides/citología , Organoides/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Células Madre/citología , Células Madre/metabolismo , Porcinos , beta Catenina/metabolismo
18.
Food Funct ; 11(12): 10786-10798, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232416

RESUMEN

Crop milk is the sole source of nutrition that sustains young pigeons (squabs) throughout growth and development. Protein accounts for approximately 55% of the nutrients in crop milk; however, its regulation mechanism remains unclear. In our study, three experiments were conducted to investigate the possible underlying mechanism of crop milk protein synthesis and nutritional interventions. Isobaric tagging for relative and absolute quantification (iTRAQ) analysis found that the Janus activated kinase (JAK)/signal transducers and activators of transcription (STAT) pathway was significantly up-regulated in breeding pigeons during lactation compared to non-breeding pigeons. Moreover, the serum prolactin (PRL) levels increased, and the protein expression of the PRL receptor (PRLR)/JAK2/STAT5 pathway was significantly up-regulated during lactation. The serum PRL, the PRLR/JAK2/STAT5 pathway, the crop milk protein synthesis, and the squab growth performance were inhibited by bromocriptine mesylate injection, a PRL-specific inhibitor. In addition, dietary supplementation with 0.30% dl-methionine or dl-methionine-dl-methionine (especially 0.30% dl-methionine-dl-methionine), significantly increased serum PRL levels and PRLR/JAK2/STAT5 activity, and improved the crop milk protein synthesis. In conclusion, our results demonstrated that the PRL-induced PRLR/JAK2/STAT5 signaling pathway plays a vital regulatory role in crop milk protein synthesis, and 0.30% dl-methionine-dl-methionine is superior to dl-methionine in promoting crop milk protein synthesis.


Asunto(s)
Janus Quinasa 2/metabolismo , Lactancia/metabolismo , Metionina/metabolismo , Proteínas de la Leche/metabolismo , Biosíntesis de Proteínas , Factor de Transcripción STAT5/metabolismo , Animales , Columbidae , Suplementos Dietéticos , Femenino , Lactancia/genética , Masculino , Metionina/administración & dosificación , Leche , Proteínas de la Leche/genética , Biosíntesis de Proteínas/genética , Transducción de Señal , Activación Transcripcional
19.
J Agric Food Chem ; 68(17): 4884-4892, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32275833

RESUMEN

Skeletal muscle is the primary source of protein for humans. However, the mechanisms of skeletal muscle growth, such as nutrition control, remain unknown. Moreover, the function of lysine (Lys) in controling skeletal muscle growth has gradually demonstrated that Lys is not only substantial for protein synthesis but also a signaling molecule for satellite cell (SC) activation. In the current work, the number of differentiated SCs in the longissimus thoracis muscle and the fusion index of SCs were both governed by Lys supplementation. Meanwhile, the myogenic regulatory factors and the mammalian target of rapamycin complex 1 (mTORC1) pathway showed the same tendencies of changes as the differentiation of SCs. After Lys was resupplemented with rapamycin, the mTORC1 pathway was inhibited and the differentiation ability of SCs was suppressed. Collectively, the results showed that the mTORC1-pathway-mediated SC differentiation was required for Lys-promoted skeletal muscle growth.


Asunto(s)
Lisina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Diferenciación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Músculo Esquelético/metabolismo , Porcinos
20.
Food Funct ; 11(5): 3941-3951, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338270

RESUMEN

Apoptosis is programmed cell death that can be stimulated by external stress or nutrition restrictions. However, the precise mechanism of apoptosis in skeletal muscle remains unknown. The objective of this study was to investigate whether apoptosis could be regulated by lysine (Lys) supplementation and the potential mechanism. In this study, an isobaric tag for relative and absolute quantification (iTRAQ) proteomics analysis of the longissimus dorsi muscle from piglets showed that the Janus family tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) pathway was involved in Lys deficiency-induced apoptosis and inhibited skeletal muscle growth. Meanwhile, western blotting results demonstrated that Lys deficiency led to apoptosis in the longissimus dorsi muscle with the JAK2-STAT3 pathway inhibition. Interestingly, apoptosis was suppressed, and the JAK2-STAT3 pathway was reactivated after Lys re-supplementation. In addition, the results showed that Lys deficiency-induced apoptosis in satellite cells (SCs) was mediated by the JAK2-STAT3 pathway inhibition. Moreover, the JAK2-STAT3 pathway was reactivated by Lys re-supplementation and suppressed cell apoptosis, and this effect was inhibited after treatment with Tyrphostin B42 (AG 490). In conclusion, we found that Lys inhibits apoptosis in SCs to govern skeletal muscle growth via the JAK2-STAT3 pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Janus Quinasa 2/metabolismo , Lisina/farmacología , Músculo Esquelético/crecimiento & desarrollo , Factor de Transcripción STAT3/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Animales , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Janus Quinasa 2/genética , Factor de Transcripción STAT3/genética , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...